The Digital Divide Challenge

- Southeast Houston
 - 37% of children below poverty
 - 56% have < $25,000/year *household* income
- Goal: pervasive wireless and transformational applications
Technology For All/Rice Mesh Deployment

“Empower low income communities through technology”

- Pilot neighborhood: Houston’s East End (Pecan Park)
- Status: approximately 3 km2 of coverage and 1,000 users
- Operational since late 2004

Applications

- Internet access, education, work-at-home, health care
Outline

- Digital divide objectives
- Network architecture and platform
- Network planning, deployment, and measurements
- New applications and future work
- Challenges for Houston
Two-Tier Mesh Architecture

- Limited gateway nodes wired to Internet
- Mesh nodes wirelessly forward data
- Backhaul tier - mesh node to mesh node
- Access tier - mesh node to client node
Design Objectives/Constraints

- Single wireline gateway (burstable to 100 Mb/sec)
- $15k per square km ($100k typical for mesh)
- 99% coverage for entire neighborhood
 - contrasts with single-tier “community nets”
- 1 Mb/sec minimum access rate
- Programmable platform for protocol design and measurement
Commercial Technologies

<table>
<thead>
<tr>
<th>Vendor</th>
<th>Product</th>
<th>Radios for client access</th>
<th>Radios for backhaul</th>
</tr>
</thead>
<tbody>
<tr>
<td>BelAir Networks</td>
<td>BelAir 200</td>
<td>1 802.11b/g</td>
<td>Up to 3 proprietary 5GHz</td>
</tr>
<tr>
<td>Cisco</td>
<td>Aironet 1500</td>
<td>1 802.11b/g</td>
<td>1 802.11a</td>
</tr>
<tr>
<td>Firetide</td>
<td>HotPort 3203</td>
<td>1 802.11a/b/g</td>
<td>Same as for client access</td>
</tr>
<tr>
<td>Nortel</td>
<td>Wireless AP 7220</td>
<td>1 802.11b</td>
<td>1 802.11a</td>
</tr>
<tr>
<td>Strix Systems</td>
<td>OWS 3600</td>
<td>Up to 3 802.11b/g</td>
<td>Up to 3 802.11a</td>
</tr>
<tr>
<td>Tropos Networks</td>
<td>5210 MetroMesh Router</td>
<td>1 802.11b/g</td>
<td>Same as for client access</td>
</tr>
</tbody>
</table>

Source: Network World

- No programmability as required for research
- Wide range of cost and performance
Programmable, single-radio mesh node with storage

- 200 mW 802.11b
- LocustWorld Mesh SW
- VIA C3 1Ghz
- 5 GB Hard Drives
- 4 GB Flash to run Linux
- HostAP driver
- 15 dBi Omni-directional Antenna
Mesh Antennas

- Access and Backhaul links
 - High-gain 15 dBi omni-directional antenna at 10 meters
 - Serves access and backhaul
 - Attenuation primarily due to tree canopy

- Long distance links
 - Directional antennas as wire replacement
Access Node Hardware

Access inside homes is limited
Users must understand this is not like cellular
Expect to need a bridge, repeater, or directional or high-gain antenna near a window ($20 to $100 price)

Ethernet Bridge USB WiFi Directional antenna
Outline

- Digital divide objectives
- Network architecture and platform
- Network planning, deployment, and measurements
- New applications and future work
- Challenges for Houston
Network Planning Issues

- **Density of mesh nodes**
 - If large inter-node spacing...
 - reduces # nodes (costs) per square km
 - yet, results in coverage gaps
 - and, long distance links reduce throughput

- **Number and placement of wires**
 - If few wired gateways...
 - reduces costly wireline access and deployment fees
 - yet, throughput decreases with the number of wireless hops

What is the price-performance tradeoff?
Background in RF Propagation

Pathloss
- Average or large-scale signal attenuation
- Exponential decay (pathloss exponent, α)
- Typically 2 to 5 in urban environments
 \[P_R = \frac{P_T G_T G_R \lambda^2}{16\pi^2 d^\alpha L} \]

Shadowing
- Variation between points with similar pathloss
- Typically 8 dB in urban environments
 \[P_{dBm}(d) = P_{dBm}(d_0) - 10\alpha \log_{10} \left(\frac{d}{d_0} \right) + \epsilon \]
Translation

- Links get much slower (and eventually break) as distance increases

- The key parameter is the “path loss exponent”

- A particular environment is stuck with its exponent (can’t change physics)

- Typical range: near 2 for near line-of-sight to 5 for numerous obstructions

- Shadowing: expect variations, even at one distance
Access Links: Throughput

Shannon Capacity

\[C = W \cdot \log_2(1 + \frac{S}{N_0W}) \]

- Note: 1 Mbps at -86 dBm
- Target throughput for access links
- DSL and Cable Speed
- Manufacturer specification severely optimistic
Given the path loss exponent and the node profiles, the distance-throughput tradeoff is revealed.

- 150-200 meters
 - Mesh-client distance
 - For 1 Mbps/ -86 dBm deployment

- Pathloss = 3.7
 - Urban pathloss 2 to 5 [Rappaport]
 - Dense trees
 - Wooden framed homes

- Shadowing = 4.1
Experiments yielded lower path-loss exponent of 3.3
- Due to both antennas being at 10 meters and high-gain
- Permissible node spacing 200m to 250m for 3 Mb/sec links
Single Hop Measurement Findings

- Accurate baseline physical measurements critical for effective deployment (measured = 3.3, models suggest 2 to 5)
 - 2 yields completely disconnected network
 - 3.5 yields overprovision factor of 55%
 - 4 yields overprovision factor of 330%
 - 5 yields 9 times overprovisioning

- Accurate throughput-signal-strength function critical
 - manufacturer values over-estimate link range by 3 times yielding disconnected network

- Requires small number of measurements
 - 15 random measurements = std. dev. 3% about average
 - 50 random measurements = std. dev. 1.5% about average
Multihop Experiments

Issue: How does the number of wireless hops affect performance?
- The answer controls the required number of wired gateways
- Ideally, throughput is independent of spatial location
Bad News

Scenario: large file uploads via FTP/TCP

Nodes farther away nearly starve
	content more times for more resources
	encounter asymmetric disadvantages in contention
Starvation Solution I: Rate Limiting

Need to throttle dominating flows
– Statically (as in current deployment) or dynamically according to congestion (via IEEE 802.11s)

...to leave sufficient spare capacity for starving flows
Starvation Solution II: Exploit Statistical Multiplexing

- Bursty traffic yields gaps in demand
 - on-off vs. greedy
 - alleviates spatial bias

- Can support approximately 30 web browsers per mesh node with minimal spatial bias
Multihop Measurement Findings

- Imperative to consider multiple multi-hop flows
 - Cannot “extrapolate” from link measurements as in wired nets

- Starvation in fully backlogged upload
 - Without additional mechanisms, severe problem with p2p-like traffic

- Proper rate limiting of flows alleviates starvation
 - Static or dynamic

- Web traffic and provisioning allows statistical multiplexing to alleviate starvation
 - Even without rate limiting
Healthcare Applications

- Pervasive health monitoring with body-worn health sensors
- Health information delivery through body-worn user interfaces
- Initial focus on obesity management and cardiovascular diseases
- Collaboration with health researchers
 - Baylor College of Medicine
 - Methodist Hospital
 - UT Health Science Center at Houston
- User and field studies in Houston neighborhood with TFA wireless coverage

Ed Knightly
Current Prototype (Lin Zhong)

- **Left:** Bluetooth wearable sensors for mobile system to connect health information: debugging and mini versions

- **Right:** Wrist-worn Bluetooth display for mobile system to deliver health promoting messages

Ed Knightly
Challenges for Houston

- Tempered expectations, especially indoors
 - Avoid Tempe-style complaints
- Heterogeneous propagation and usage environments
 - Downtown vs. treed urban vs. sparse
- Evolvable architecture
 - 802.11s will standardize, 802.16 will mature, MIMO will advance (802.11n), we will learn, etc.
- Balancing cost ($$/km^2) and performance (Mb/sec/km^2, %-coverage)
 - Lowest cost solution may sacrifice throughput and coverage
- Incorporating cost and performance implications of the number of wired gateway nodes
- Innovative applications beyond “access”
Conclusions

- Multi-hop wireless technology is cutting edge
- Most experience is not in public access
- Deployment and operational challenges ahead
- Opportunities for innovative applications

More information
- TFA website http://www.techforall.org
- Rice website http://www.ece.rice.edu/networks